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Abstract

Protected areas (PAs) are intended to provide native biodiversity and habitats with

a refuge against the impacts of global change, particularly acting as natural filters

against biological invasions. In practice, however, it is unknown how effective PAs

will be in shielding native species from invasions under projected climate change.

Here, we investigate the current and future potential distributions of 100 of the

most invasive terrestrial, freshwater, and marine species in Europe. We use this

information to evaluate the combined threat posed by climate change and invasions

to existing PAs and the most susceptible species they shelter. We found that only a

quarter of Europe’s marine and terrestrial areas protected over the last 100 years

have been colonized by any of the invaders investigated, despite offering climati-

cally suitable conditions for invasion. In addition, hotspots of invasive species and

the most susceptible native species to their establishment do not match at large

continental scales. Furthermore, the predicted richness of invaders is 11%–18% sig-

nificantly lower inside PAs than outside them. Invasive species are rare in long-

established national parks and nature reserves, which are actively protected and

often located in remote and pristine regions with very low human density. In con-

trast, the richness of invasive species is high in the more recently designated Natura

2000 sites, which are subject to high human accessibility. This situation may change

in the future, since our models anticipate important shifts in species ranges toward

the north and east of Europe at unprecedented rates of 14–55 km/decade, depend-

ing on taxonomic group and scenario. This may seriously compromise the conserva-

tion of biodiversity and ecosystem services. This study is the first comprehensive

assessment of the resistance that PAs provide against biological invasions and cli-

mate change on a continental scale and illustrates their strategic value in safeguard-

ing native biodiversity.
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1 | INTRODUCTION

Global species and habitat diversity are declining at unprecedented

rates with no signs of abatement in spite of international efforts to

halt biodiversity loss (Butchart et al., 2010). Biological invasions and

climate change are two key drivers behind such declines (Walther

et al., 2009). The proliferation of invasive species can be linked to

58% of recent species extinctions and is currently considered a

major threat for the conservation of native flora and fauna around

the world (Bellard, Cassey, & Blackburn, 2016). This impact will be

aggravated by climate change, expected to accelerate the risk of

extinction for up to one in six species, depending on region (Bellard,

Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012; Urban, 2015).

The problem is particularly acute in Europe, where the number of

invasive species has increased fourfold in the last century (Hulme,

Pysek, Nentwig, & Vila, 2009), and is likely to continue increasing

with the intensification of socioeconomic activities coupled with

ongoing climate changes (Seebens et al., 2015, 2017).

Protected areas (PAs), as cornerstones of global conservation

efforts, are championed as refugia for native species, locally prevent-

ing habitat degradation attributable to human activities (Rodrigues

et al., 2004), facilitating the adaptation of species and communities to

ongoing climate changes (Ga€uz�ere, Jiguet, & Devictor, 2016; Johnston

et al., 2013; Thomas et al., 2012), and acting as a natural filter against

invasions (Foxcroft, Jaro�s�ık, Py�sek, Richardson, & Rouget, 2011; Py�sek,

Jaro�s�ık, & Ku�cera, 2003). In practice, however, little is known about

the effectiveness of PAs in shielding native species from biological

invasions (Py�sek, Genovesi, Pergl, Monaco, & Wild, 2013).

Europe has one of the largest coordinated networks of protected

areas in the world. The Natura 2000 network of protected sites,

coupled with national designated areas such as national parks and

nature reserves, provides crucial shelter from the damaging effects

of human-related stressors to over 1,100 species listed by the Habi-

tats (92/43/EEC) and Birds (2009/147/EC) Directives (Gaston, Jack-

son, Nagy, Cant�u-Salazar, & Johnson, 2008; Gruber et al., 2012).

Several studies over recent years have documented how climate

change—and associated changes in land-use and human transportation—

progressively removes physiological constraints for the growth and spread

of some invasive species, particularly those introduced from warm cli-

mates, facilitating their expansion into regions where they previously

could not survive and reproduce (Walther et al., 2009). However, no stud-

ies have explored to what extent climate change may facilitate (or con-

strain) the expansion of invasive species into PAs at continental scales.

Here, we investigate the current and future distribution of some

of the most serious invasive species across Europe, integrating for

the first time the study of the terrestrial, freshwater, and marine

environments at a scale of an entire continent. We use this informa-

tion to evaluate the combined threat posed by climate change and

biological invasions to existing PAs and the most susceptible species

they harbor. To guarantee a high relevance to researchers and envi-

ronmental practitioners, we focus on “100 of the most invasive spe-

cies in Europe,” a representative set of invaders with different life

strategies, invaded habitats, and impacts (Vil�a et al., 2009). The

spread of these invaders poses a serious threat to a large variety of

native European species through competition, predation, parasitism,

hybridization, and indirect habitat alteration (Hulme et al., 2009). For

this reason, here we evaluate the effectiveness of protected areas in

shielding native biota from the current and future impacts of inva-

sive species. Findings from this study are pivotal to support the

implementation of the Habitats and Birds Directives as well as the

European Regulation (1143/2014) on invasive alien species, all of

which prioritize the protection of native biodiversity, habitats, and

related ecosystem services.

2 | MATERIALS AND METHODS

2.1 | Invasive species occurrence

Information on the current global (i.e., native and invaded) spatial

distribution of 100 of the most invasive species in Europe (see the

list of species in http://www.europe-aliens.org/speciesTheWorst.do)

was obtained from multiple international and regional data gateways:

the Global Biodiversity Information Facility (GBIF, http://www.gbif.

org/), the Biological Collection Access Service for Europe (BioCase,

http://www.biocase.org/), the Ocean Biogeography Information Sys-

tem (IOBIS, http://www.iobis.org/), the UK’s National Biodiversity

Network (https://data.nbn.org.uk/), DiscoverLife (http://www.disc

overlife.org/), Aquamaps (http://www.aquamaps.org/), and the Inte-

grated Digitized Biocollections (iDigBio, https://www.idigbio.org/).

To cover gaps in the distribution of invaders (i.e., no georefer-

enced records in regions where the species is suspected to be pre-

sent), data were checked against the global distribution of each

species described in CABI-Invasive Species Compendium (CABI-ISC,

http://www.cabi.org/isc/) that lists countries (or major oceanic

regions) where the species has been reported (either as native or

introduced). We then performed an extensive ISI Web of Knowledge

literature review using a combination of keywords including the spe-

cies taxonomic name and the specific data-missing region (Supple-

mentary Material, Table S1).

As a result, over 1.15 million georeferenced locations were com-

piled from 184 countries across the globe, detailing the native and

invasive distribution of candidate invasive species. Because data

quality (sample size, spatial errors, spatial autocorrelation) strongly

determines the performance of distribution models (Graham et al.,

2008; Wisz et al., 2008), we applied an exhaustive cleaning protocol

(see Supplementary Materials) that removes erroneous records (e.g.,

duplicates, misleading values, low-resolution coordinates), reduces

sampling bias, and ultimately allows analysis of macroecological pat-

terns (Garc�ıa-Rosell�o et al., 2015). As a result, the number of georef-

erenced records available for this study was reduced to 238,000,

with an average 2,767 per species. Species with less than 100 occur-

rence records were discarded for further modeling to avoid any

potential influence of low sample sizes (Barbet-Massin, Jiguet, Albert,

& Thuiller, 2012), so that 86 species (27 terrestrial animals, 18 ter-

restrial plants, 13 freshwater, and 28 marine organisms) were finally

evaluated (see the complete list of species in Table S2).
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2.2 | Susceptible protected species

To identify the native protected species that may be affected by the 86

focus invaders, we consulted impact information from the Global Inva-

sive Species Database (GISD, http://www.iucngisd.org/gisd/), CABI-

ISC, the European Network on Invasive Alien Species (NOBANIS,

https://www.nobanis.org/), and the European Alien Species Information

Network (EASIN, http://easin.jrc.ec.europa.eu/). We restricted our anal-

ysis to species: (1) considered native in Europe, (2) with published evi-

dence of negative impact from any of the 86 focus invaders, and (3)

protected under the Birds or Habitats Directives, or by other interna-

tionally relevant Conventions (e.g., Bern Convention, OSPAR Conven-

tion, Bonn Convention, Helsinki Convention, and Barcelona SPA/BD

Protocol). It must, thus, be noted that invasive species in our list may

affect directly and indirectly a much larger number of native (as well as

other invasive) species that do not meet our criteria for selection.

As a result, we identified 148 native protected species that may be

susceptible to the expansion of our focus invaders (54 terrestrial ani-

mals, 37 semi-aquatic animals, 24 freshwater organisms, 22 terrestrial

plants, and 9 marine organisms) (Table S3). Their conservation status

according to the IUCN European Red List was variable: 2 Data Deficient,

22 Not Evaluated, 79 Least Concern, 13 Near Threatened, 15 Vulnera-

ble, 9 Endangered, and 8 Critically Endangered. Examples of the latter

include the European eel (Anguilla anguilla), several bivalve freshwater

mussels (Margaritifera auricularia, M. margaritifera, and Unio gibbus), the

berlengensis Armeria (Armeria berlengensis), Maltese cliff-orache

(Cremnophyton lanfrancoi), and Maltese everlasting (Helichrysum meli-

tense). The most threatening invaders in our list included the American

mink (affecting 37 species), brown rat (29), and red-swamp crayfish (16),

altogether posing a threat to 69 native protected species (Table S3).

2.3 | Protected areas in Europe

In this study, we investigate the potential joint threat posed by cli-

mate change and the concurrent expansion of invasive species on

the conservation of protected areas and species in Europe. We

restricted our analyses to PAs with area >1 km2 to match the resolu-

tion of information on invasive species occurrence and environmen-

tal predictors. Two sources of PAs were used (more details in

Supplementary Material):

• Nationally designated areas. We extracted from the World Data-

base on Protected Areas (WDPA, http://protectedplanet.net/) a map

including PAs belonging to IUCN categories I and II that correspond

to nature reserves and national parks, respectively. Once PAs>1 km2

in Europe were extracted, 2,038 nationally designated sites were

obtained (1,882 inland covering both terrestrial and freshwater envi-

ronments, 156 in marine areas). Nationally designated areas are large

unmodified or slightly modified areas, without permanent or signifi-

cant human habitation, which are strictly protected to preserve bio-

diversity and ecosystem processes. They are on average

22 � 16 years old (designation between 1920 and 2015) and have

a size of 73 � 305 km2 (area range: 1–5,551 km2).

• Natura 2000. We extracted from the European Commission’s

repository (http://ec.europa.eu/environment) the Natura 2000

database and shapefile containing information from 11,046 inland

(terrestrial and freshwater) and 2,064 marine PAs >1 km2. Natura

2000 areas in our database have been more recently designated

(11 � 5 years old, designation between 1940 and 2015) and are

generally larger (89 � 317 km2, range: 1–9,016 km2) than nation-

ally designated areas. As many as 90% of nationally designated

areas in our database are also integrated within Natura 2000

(Fig. S1). Natura 2000 is not a system of strict nature reserves

from which all human activities are excluded, but low-intensity

human activities are allowed on most of the land.

These two distinct networks, totaling 15,148 PAs (18% of Eur-

ope’s inland and 6% of marine surface), allow the assessment of the

effectiveness of protected areas in shielding native biota from the

current and future impacts of invasive species.

First, using our comprehensive database on the global occurrence

of Europe’s 86 most invasive species, we identified the invaders

already reported from each protected area (Richness Invasive Species,

RIS). We must note, however, that this is likely an underestimation

since rigorous data on the continent-wide distribution and abundance

of invasive species within PAs are rarely available (Py�sek et al., 2013).

With this information, we calculated the number of invasive species

recorded per unit area protected over time. Second, we obtained the

incidence of the 148 susceptible native species in each protected area

from the European Nature Information System (EUNIS, http://eu

nis.eea.europa.eu/), which lists all protected areas with known popula-

tions of each listed species. While EUNIS is useful to identify the

protected areas that shelter each native species investigated, lack of

spatially explicit information (georeferenced locations) prevented mod-

eling the distribution of native species under future scenarios. Finally,

because EUNIS depends on information provided by member states

and may underestimate the known distribution of susceptible native

species, we complemented it with additional records from GBIF.

2.4 | Environmental predictors

2.4.1 | Terrestrial and freshwater scenarios

Candidate environmental predictors to model the potential expansion

of 58 inland invasive species (i.e., terrestrial and freshwater) included

19 bioclimatic variables extracted from WorldClim-Global Climate

Data (http://www.worldclim.org/). Bioclimatic variables represent

annual trends, seasonality, extremes, or limiting environmental factors

related to temperature and precipitation for the 1950–2000 reference

period (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), which are

commonly used in species distribution models. To account for the

strong human relationship usually displayed by invasive species, we

incorporated an “accessibility” proxy as covariate. Produced by the

European Commission (http://forobs.jrc.ec.europa.eu/products/gam/),

this proxy measures the travel time to the nearest city (i.e., population

>50,000), thereby integrating both distance to urban areas and the
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presence of transportation networks (Nelson, 2008). This map has

been used before to compensate sampling bias toward areas with

high accessibility (Fourcade, Engler, R€odder, & Secondi, 2014), which

may be particularly important in the case of invasive species.

Identifying the most appropriate variables for modeling is crucial

to maximize the accuracy of distribution models and their projection

in space in time. In this study, we followed a selection protocol that

involved removing highly correlated and multi-collinear variables

while prioritizing predictors that are ecologically meaningful to

explain the large-scale distribution of flora and fauna (Tables S4–S5).

Final variables considered for modeling included accessibility (travel

time, hours), maximum annual temperature (°C), minimum annual

temperature (°C), maximum annual precipitation (mm), minimum

annual precipitation (mm), and precipitation seasonality (Fig. S2). For

all inland predictors, we chose a high resolution of 30 arc seconds

(1 9 1 km approximately), which allows a better characterization of

the climatic niche of species and identification of areas most vulner-

able to invasion than using coarser resolutions.

To account for uncertainty in future scenarios, we used three

different Global Circulation Models: the Community Climate System

Model, version 4 (CCSM4), the Hadley Global Environmental Model

—Earth System, version 2 (HadGEM2-ES), and the climate model

developed by the National Centre for Meteorological Research, ver-

sion 5 (CNRM-CM5) (see Supplementary Materials). Within each

GCM, different scenario alternatives are provided based on increas-

ing Representative Concentration Pathways (RCPs), that is, green-

house gas concentration trajectories. For this study, we chose the

2.6 and 8.5 RCPs because they represent two extremes of the

potential range of future conditions. All scenarios were downloaded

for the “medium-term” (representing average conditions predicted

for 2041–2060) and the “long-term” (average for 2061–2080) from

WorldClim. As a result, we obtained climatic proxies for 12 different

scenarios (3 GCMs 9 2 RCPs 9 2 time periods, see Table S6).

Accessibility was considered to remain at least the same under

future climate scenarios, although we may expect it to keep increas-

ing in the future, as transportation and urban development contin-

ues, which may affect the expansion of invasive species (Seebens

et al., 2015).

2.4.2 | Marine scenarios

For modeling of the 38 marine species, nine candidate variables were

obtained from Bio-Oracle (Ocean Rasters for Analysis of Climate and

Environment, http://www.oracle.ugent.be/, Tyberghein et al., 2012):

salinity, sea surface temperature (mean, minimum, maximum, and

range), and air temperature (mean, minimum, maximum, and range).

Variables represent current conditions calculated with reference data

from 1961 to 2010 (Tyberghein et al., 2012). Bathymetry was

obtained from MarSpec—Ocean Climate Layers for Marine Spatial

Ecology (http://www.marspec.org). Accessibility was in this case calcu-

lated in QGIS v 2.6.1 as the Euclidean distance to commercial ports,

weighted by their total cargo volume (see more details in Gallardo,

Zieritz, & Aldridge, 2015). The maximum available spatial resolution

for marine predictors was 5 arc-minutes (10 9 10 km approx.). After

the selection protocol, predictors considered for modeling marine

invasive species included bathymetry (m), salinity (PSS) annual range

of air temperature (°C), annual maximum and range of sea surface tem-

perature (°C), and accessibility (km) (Fig. S3).

The range of future scenarios available for modeling the marine

environment was more limited than for the inland in terms of GCM

and time frames. Thus, in this study, we could only focus on a single

GCM: the UKMO-HadCM3 developed by the Hadley Centre for Cli-

mate Prediction and Research (Gordon et al., 2000). This model has

been used extensively for climate prediction and other climate sensi-

tivity studies in the marine environment. Three greenhouse gas emis-

sion trends are considered (Davidson & Metz, 2000): A1B, A2, and

B1 (see Supplementary Materials). For each emission trend, we

obtained “medium-” and “long-term” future predictions correspond-

ing to 2087–2096 and 2187–2196, respectively. This makes a total

of five future marine scenarios (B1 not available for 2187–2196, see

Table S7). Please note that available time frames for the inland

(2041–2060 and 2061–2080) and marine (2087–2096 and 2187–

2196) environments differ, and are hereafter termed medium- and

long-term future scenarios, respectively, to avoid confusion.

Bathymetry and accessibility were considered to remain constant

under future marine scenarios, although we may expect accessibility

to increase with ongoing globalization (Seebens et al., 2015), and

sea-level rise to expand the total coastal area susceptible to marine

invasions (Courchamp, Hoffmann, Russell, Leclerc, & Bellard, 2014;

Hellmann, Byers, Bierwagen, & Dukes, 2008).

2.5 | Statistical analyses

2.5.1 | Summary of invasion

To provide a general overview of the current state of invasion, we

first obtained the total area of inland and marine Europe from the

European Environment Agency repository (EEA, https://www.eea.eu

ropa.eu/). In the marine environment, the EEA uses the Economic

Exclusive Zone (200NM from the coast) as reference for natural

resources evaluation. We then calculated the number of spatial units

(at 30-arc-second resolution ~1 km2) in Europe occupied by any of

our 86 invasive species. Likewise, we calculated the total surface

covered by the network of protected areas (nationally designated

areas and Natura 2000, excluding those smaller than 1 km2), and the

proportion occupied by our focus invaders.

2.5.2 | Spatial correlation analysis

All correlations reported in this study were evaluated using Pearson’s

correlation coefficients. The significance of correlations between

spatial patterns (e.g., between the richness of invasive and suscepti-

ble species) were estimated using Dutilleul’s spatially corrected

degrees of freedom (Dutilleul, Clifford, Richardson, & Hemon, 1993).

This method modifies the effective degrees of freedom by a normal-

ization factor estimated from the degree of spatial autocorrelation in
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the variables. Spatial correlations and their significance were

assessed using package “SpatialPack” (Osorio, Vallejos, & Cuevas,

2012) in R 3.1.3 (R Core Team, 2015).

2.5.3 | Changes in the richness of invasive species
in PAs over time

We analyzed changes in the richness of invasive species with time

since designation of the protected area, using the accessibility, area,

and type of protected area (nationally designated areas vs. Natura

2000 sites) as covariates. Because of the database structure (~75%

of the protected areas have not been colonized by any of the inva-

ders evaluated), we used zero-inflated negative binomial regression

(ZINB). This method is used to model count data that has an excess

of zero counts and is especially suited to data with overdispersion

(i.e., variance much larger than the mean). A ZINB assumes that zero

outcome is due to two different processes. In our specific case, we

may assume that a protected area has not been colonized because

the invasive species did not have the opportunity to invade. In this

case, without any propagule pressure, the only outcome possible is

zero. If there is opportunity to invade (positive propagule pressure),

it is then a count process: the richness of invasive species can be 0

or higher depending on the protected area’s suitability for the spe-

cies establishment. ZINB was run using package “pscl” (Jackman,

2008), and plots were developed with “ggplot2” (Wickham, 2016).

2.5.4 | Species distribution models

To investigate the potential consequences of climate change, an

ensemble of distribution models was used to calculate climate suit-

ability for each of the invasive species evaluated. Species distribution

models (SDM) were performed using R package BIOMOD2 version

3.1-64 (Thuiller, Georges, & Engler, 2014). Because data quality and

modeling settings determine strongly the performance of distribution

models (Ara�ujo & Guisan, 2006; Pearson & Dawson, 2003), sensitiv-

ity tests were conducted to investigate, and where possible compen-

sate, for the influence of modeling algorithm, strategy of pseudo-

absence selection, maximum number of presence records, sampling

bias, and extrapolation onto novel climates (Figs. S4–S9).

For input, we used the dataset of species occurrences and the

set of predictors that might affect the likelihood of species establish-

ment. As no independent data existed to evaluate the predictive per-

formance of the models, data were split randomly into two subsets:

70% of the original data was used for training the models and the

remaining 30% for evaluation (Ara�ujo & New, 2007). This repeated

split sampling was repeated five times to account for the uncertainty

associated to dataset partition (Thuiller, 2003). Four different algo-

rithms (GLM, GBM, RF, and GAM, see Supplementary Materials) and

three independent sets of pseudo-absences were generated to con-

trast presences. Thus, for each species, 60 model replicates were run

(4 algorithms 9 3 pseudo-absence datasets 9 5 split samplings).

Four criteria available in BIOMOD2 were considered for model

evaluation: the area under the receiver operating characteristic

(ROC) curve (AUC), the True Skill Statistic (TSS), Kappa, and the

success rate (i.e., percentage of correctly predicted occurrence loca-

tions, SR). However, since statistics were consistent and highly cor-

related, we subsequently used TSS because it is independent of

prevalence (i.e., ratio of presence to pseudo-absence data) (Allouche,

Tsoar, & Kadmon, 2006).

An “ensemble model” (Thuiller et al., 2014) was finally created

averaging the 60 model replicates weighted by their predictive per-

formance (TSS), with a threshold of TSS> 0.7. After calibration,

ensemble models were projected onto Europe to obtain binary suit-

ability maps, using the optimal threshold maximizing the TSS of the

model, which has been consistently found to produce the most accu-

rate predictions (Barbet-Massin et al., 2012; Jimenez-Valverde &

Lobo, 2007). Binary maps allow the identification of broad geo-

graphic regions where suitable climatic conditions may facilitate the

successful establishment of an invasive species. Finally, all binary

suitability maps were combined together to produce a composite

map of Predicted Richness of Invasion (PRI, number of invasive spe-

cies predicted to find suitable conditions for colonization per unit

area).

2.5.5 | The null model of invasion

A null model was designed to discard that any significant difference

found in the predicted richness of invasion (PRI) inside and outside

PAs is not simply a consequence of the random distribution of inva-

ders across Europe. To that end, we first calculated the difference in

PRI between a number of cells randomly located inside and outside

PAs (5.000 for inland Europe, and 1.000 in marine Europe). We then

randomly permuted the classification of sites into inside/outside cat-

egories, recalculated the difference in PRI, and repeated this proce-

dure 5,000 times. If the difference between cells located inside vs.

outside PAs is not significant when shuffling categories, then we can

reject the null hypothesis that there is no difference in the predicted

richness of invasion.

2.5.6 | Range change under climate change

To quantify the potential range expansion of invasive species after

climate change, we calculated the total suitable area gained and lost

under each climate change scenario using R package BIOMOD2

(Thuiller, 2003). Range change indicates potential expansion/contrac-

tion of the species range of distribution, but does not assess for any

migration shifts as it strictly compares the range sizes between pre-

sent and future projections. Thus, we located the centroid of each

binary present and future distribution and calculated latitudinal and

longitudinal shifts between them (in km/decade) using R package

“rgeos” (Bivand & Rundel, 2016).

2.5.7 | Extent of extrapolation

Distribution models sometimes extrapolate suitability in areas and

times outside the training data, a pervasive problem in distribution
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modeling (Elith, Kearney, & Phillips, 2010). To measure uncertainty

associated to extrapolation, we used Multivariate Environmental

Similarity Surfaces (MESS) using R package “dismo” (Hijmans, Phillips,

Leathwick, & Elith, 2013). This method measures the similarity in

terms of predictor variables of any given point to a reference set of

points. In this study, MESS maps for each invasive species were

combined into a single map reflecting the total number of species

that may encounter nonanalog climates to their current range. It is

important to note that nonanalog climates do not necessarily mean

incorrect predictions, since invasive species have often shown their

ability to colonize new environments, but areas were predictions

may be relatively uncertain.

3 | RESULTS

3.1 | Invasive species in protected areas

In this study, we compiled 41,000 records for 86 of Europe’s most

invasive species within the European network of protected areas

(nationally designated areas and Natura 2000 sites), affecting 26% of

Europe’s PAs (25% by area invaded, Table 1). Marine PAs are more

frequently affected by invasive species (38%), probably because of

their closeness to the coastline and thus high accessibility (Table 1).

Overall, 85% of the area colonized by invaders is located outside

PAs.

Invasive species are not evenly distributed across PAs, but con-

centrated in central and northwest Europe (Figure 1a). In contrast,

the most susceptible species to the establishment of our focus inva-

ders are scattered in PAs across continental Europe (Figure 1b).

Accordingly, latitudinal patterns of invasive vs. susceptible species

are only partially correlated (modified t test of spatial association,

r = �.12, p < .001, Figure 1c).

According to a Zero-Inflated Negative Binomial regression (ZINB,

Table 2), the richness of invasive species (RIS) significantly decreases

with travel time to major cities (Figure 2a). Interestingly, accessibility

was the most important factor of the count part of the model but

not of the zero part (Table 2). This means that invaded PAs are usu-

ally highly accessible, which is not the case for uninvaded PAs that

show different levels of accessibility. The richness of invaders shows

a unimodal response to the year of designation, peaking at those

declared in the 1990s (Figure 2b). In accordance, areas protected

before the 1950s provide shelter to a large number of susceptible

species but none of our focus 86 invasive species, and the richness

of invaders increases rapidly in PAs designated after the 1970s (Fig-

ure 1d). We must note that older PAs tend to be located in more

inaccessible areas (correlation between accessibility and year of des-

ignation, t = �0.11, F = 10.10 on 1 and 874 DF, p = .0015) and may

thus be subject to a lower propagule pressure than newer, more

accessible PAs. The response of RIS to surface of the PA followed

the common species–area curve (Figure 2c), basically reflecting the

higher probability to find invasive species at larger PAs (also indi-

cated by Figure 1d). It is also noteworthy that the richness of inva-

sive species is less than half in nationally designated areas than in

Natura 2000 sites (Figure 2d).

3.2 | Invasive species under climate change

We used the complete database of >200,000 records reflecting

the global distribution of our focus invaders to model their

potential expansion across Europe under current conditions, and

in the medium and long terms. Model evaluation indicated excel-

lent performance (AUC of globally calibrated models range 0.87–

0.99, TSS 0.61–0.97, see Table S8). Most important predictors

included minimum annual temperature and accessibility for ter-

restrial and freshwater species, and bathymetry for marine inva-

ders (Fig. S10). Overall, 57%–74% of terrestrial and freshwater

invaders showed range expansion (i.e., positive range change) in

the medium-term and 62%–69% in the long-term, depending on

the future scenario investigated (Table S9). In contrast, fewer

marine organisms are predicted to expand (43%–54% of species

in the medium term and 39%–43% in the long term, Table S10).

Species particularly favored by climate change include the knot-

grass (Paspalum paspalodes L.), the coypu (Myocastor coypu

Molina, 1782), the tree of heaven (Ailanthus altissima (Mill.)

Swingle), and the American bullfrog (Lithobates catesbeianus

Shaw, 1802) showing over a 20% expansion in their current dis-

tribution (Table S9). The spatial distribution of some invaders is

predicted to contract, with examples like the rugose rose (Rosa

rugosa Thunb.) and the raccoon dog (Nyctereutes procyonoides

Gray, 1834), expected to lose more than 20% of their current

climate suitability (Table S9).

Predictions of single-species invasion potential were overlaid to

create a heat-map of Predicted Richness of Invasion (PRI, Figure 3).

Under the reference present scenario, which may represent the

potential for short-term expansion, PRI is highest in the northwest

of Europe, covering the Atlantic biogeographic region, the North &

Celtic Seas, and Bay of Biscay (Figure 3a, see Fig. S11 for the

biogeographic regions considered). The uncertainty associated with

this scenario was highest at high latitude (Artic) and altitude (Alpine)

biogeographic regions and relatively low in the rest of Europe (Fig-

ure 3b). Under future conditions, the uncertainty associated to the

TABLE 1 Summary of the area affected by 86 of the most
invasive species in Europe. Data are provided for the European
Union (28 member states) and for the network of Protected Areas
(PA), including nationally designated areas and Natura 2000 sites.
Units are million hectares (Mha). Also indicated, the total number of
PAs and the % affected by any of the invaders investigated

Inland Marine Total

Total EU area 442 MHa 572 Mha 1,014 Mha

EU area invaded 159 Mha (36%) 40 Mha (7%) 199 Mha (19%)

Total PA area 88 Mha 34 Mha 122 Mha

PA area invaded 24 Mha (27%) 7 Mha (20%) 31 Mha (25%)

Total num. PAs 12,928 2,220 15,148

Num. invaded PAs 3,152 (24%) 847 (38%) 3,999 (26%)
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F IGURE 1 Spatial patterns of invasive and susceptible species within protected areas (PAs) in Europe. The size of bubbles represents the
number of invasive (a) and susceptible (b) species currently known to occur in any of the 12,928 inland and 2,220 marine PAs evaluated (total
N = 15,148). While 64% (9,749) of PAs host susceptible species, only a third (28%; 4,361) has been invaded. (c) Latitudinal distribution of
invasive and susceptible species (spatially corrected Pearson, r = �.12, p < .001). The solid line and shaded area represent the mean and
standard error of the number of species, fitted by LOESS with a 0.1 span. (d) Number of susceptible and invasive species per unit area covered
by PAs designated in the last hundred years. Bars represent the cumulative area protected over time. See Fig. S1 for a map of protected areas
(only those >1 km2 considered here)

TABLE 2 Results from a Zero-Inflated Negative Binomial model (ZINB) between the Richness of Invasive Species (RIS) and the year of
designation, area, accessibility, and type (nationally designated areas or RN 2000) of protected areas. N = 15,142 marine and terrestrial
protected areas considered

Factors Estimate SE CI (5/95%) z-value p-value

Count model coefficients (Poisson with log link)

Intercept 0.57 0.04 0.50/0.68 12.57 ***

Year �0.25 2.21 �4.59/4.08 �0.11 n.s.

Year2 �19.12 2.65 �24.34/�13.93 �7.21 ***

Area 11.42 0.56 10.32/12.51 20.38 ***

Area2 �4.93 0.61 �6.13/�3.73 �8.04 ***

Accessibility �41.36 5.90 �52.93/�29.79 �7.01 ***

Accessibility2 19.54 5.93 7.92/31.17 3.29 ***

Type: RN 2000 0.26 0.04 0.17/0.35 5.78 ***

Zero-inflation model coefficients (binomial with logit link)

Intercept 1.10 0.10 0.90/1.30 10.92 ***

Year 31.75 4.44 23.04/40.45 7.15 ***

Year2 41.71 5.29 31.34/52.08 7.88 ***

Area �384.11 19.13 �421.62/�346.60 �20.07 ***

Area2 171.69 9.99 152.10/191.29 17.17 ***

Accessibility 20.88 8.83 �3.57/38.19 0.02 *

Accessibility2 �9.36 8.01 �25.07/6.33 �1.17 n.s.

Type: RN 2000 �0.70 0.09 �0.89/�0.51 �7.20 ***

Log-likelihood: 1.62 x 104 on 16 DF

***significant at p < .001; *significant at p < .05; n.s.: not significant.
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Artic and Alpine regions declines, probably because of the general

increase in temperatures anticipated for these areas (Table S11,

Fig. S12). By contrast, uncertainty increases in the Mediterranean

and Pannonian biogeographic regions, where future scenarios antici-

pate unprecedented warm and dry conditions (Gibelin & D�equ�e,

2003; Giorgi & Lionello, 2008). Uncertainty in the marine environ-

ment was highest in the Red and Mediterranean Seas and the Can-

ary Current (Table S12 and Fig. S13).

Rather than an increase in total area suitable to invaders, we

found a shift in species ranges. The core suitable distribution for

inland invasive species is predicted to shift at an average rate of 37–

50 km per decade toward the north and 17–22 km per decade

toward the east of Europe (Table 3, Figure 3c and d).

The direction and magnitude of niche shifts was highly variable

for marine invaders: those species currently distributed in the

eastern part of the Mediterranean Sea are generally predicted to

move northward and westwards (e.g., Saurida undosquamis,

Table S12). In contrast, species currently distributed in the north-

ern seas of Europe are predicted to shift further toward the

Northeast (Figure 3c and d). Species with widespread populations

in both seas showed multidirectional shifts with no clear trends

(Table S13). Consequently, average centroid shifts for marine inva-

ders at 14–22 km/decade northwards and 8–16 km/decade west-

wards are considerably slower than those predicted for inland

species (Table 3).

3.3 | Invasive species under climate change in
protected areas

The predicted richness of invasion (PRI) under the current reference

scenario is 18% lower inside inland protected areas than outside

them (Welch Two Sample t test between 5,000 random cells located

inside and outside inland PAs, t = �15.42, df = 8674, p < .001). The

null model assuming random distribution of PAs across Europe fur-

ther allowed us to reject the null hypothesis of equal PRI inside and

outside inland PAs (<5% probability of significant difference at ran-

dom). This is likely related to the 67% lower accessibility inside PAs

(accessibility inside vs. outside inland PAs, Welch Two Sample t test:

t = 19.6, df = 8674, p < .001). Under future climate change scenar-

ios, PRI is predicted to remain 19%–22% lower inside inland PAs

than outside them.

In the marine environment, PRI under the current reference

scenario is 11% lower inside marine PAs than outside them

(Welch Two Sample t test between 1,000 random cells located

inside and outside marine PAs, t = �4.44, df = 1404, p < .001).

This difference is maintained under future scenarios (8%–11%

lower PRI inside PAs than outside them depending on scenario).

This may again be related to the proximity of marine protected

areas to the coast and thus higher human accessibility (accessibil-

ity inside vs. outside marine PAs, Welch Two Sample t test:

t = 9.9, df = 1404, p < .001). The null model, showing a probability

2.00

3.00

Accessibility (travel time)

(a) (b)

(c) (d)

F IGURE 2 Response of the Richness of Invasive Species (RIS) registered in protected areas (PA) to: (a) accessibility measured as travel time
to major cities, (b) the year of designation of the PA, please note zero RIS projected for PAs designated before the 1960s, (c) the total surface
of the PA, and (d) the type of PA (Nationally Designated Areas vs. Natura 2000 sites). The solid line and shaded area represent the mean and
standard error of the richness of species, fitted by LOESS with a 0.1 span. Statistics from a zero-inflated negative binomial model can be
consulted in Table 2
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<5% to find significant differences between randomly allocated

marine PAs, further confirms our findings.

4 | DISCUSSION

4.1 | Invasive species in protected areas

Protected areas (PAs) are championed as refugia for some of the

world’s most threatened organisms, but little is known about their

potential to resist the damaging effects of biological invasions.

While the presence (or absence) of invasive species is not specifi-

cally considered during designation, we may expect protected

areas, particularly those established earlier and limiting human

activities, to enjoy a good conservation status and therefore to

host relatively few invasive species. In this study, we find that

only a quarter of terrestrial and marine protected areas have been

colonized by Europe’s most invasive species, even though PAs are

largely climatically suitable for invasion. Remarkably, areas pro-

tected before the 1950s provide shelter to a large number of sus-

ceptible native species, but none of our focus invaders (Figure 1d).

F IGURE 3 Predicted Richness of Invasion (PRI) for 86 of the most invasive species in Europe. (a) PRI according to the present reference
scenario. Values represent the total number of invasive species with suitable climate conditions for establishment. (b) Uncertainty associated to
the present reference scenario. Values represent the number of species that encounter nonanalog climates to their current global distribution.
(c) and (d): Predicted changes in PRI in the medium and long term, respectively. Arrows link the centroid of the species predicted distribution
under present and future conditions. Inland projections correspond to the CNRM-CM5 pessimistic scenario for 2050 (c) and 2070 (d). Marine
projections correspond to the HadCM3-A1b scenario for 2100 (c) and 2200 (d). Results for other scenarios can be consulted in Figs. S14 and
S15

TABLE 3 Summary of range changes expected for five major groups of invasive species in Europe. N = total number of invasive species
considered in each group. Range Change: % area change relative to the present reference scenario according to species distribution models
(Tables S9 and S10). Lat. shift: latitudinal shift in the centroid of the distribution of invasive species relative to the present reference scenario
with indication of direction (north or south). Long. shift: longitudinal shift in the centroid of the distribution of invasive species relative to the
present reference scenario with indication of direction (east or west)

Middle term Long term

Group N
Range change
(% area)

Lat. shift
(km/dec)

Long. shift
(km/dec)

Range change
(% area)

Lat. shift
(km/dec)

Long. shift
(km/dec)

Terrestrial plants 18 2.34 � 4.69 54 � 31 (N) 16 � 41 (E) 1.97 � 8.30 71 � 49 (N) 13 � 40 (E)

Terrestrial vertebrates 15 4.39 � 4.61 15 � 36 (N) 32 � 37 (E) 4.26 � 7.28 20 � 44 (N) 23 � 31 (E)

Terrestrial invertebrates 12 4.85 � 4.94 35 � 43 (N) 29 � 33 (E) 4.68 � 7.78 47 � 56 (N) 22 � 27 (E)

Freshwater organisms 13 2.44 � 4.22 41 � 40 (N) 15 � 53 (E) 0.98 � 6.73 56 � 60 (N) 9 � 41 (E)

Summary inland species 58 3.41 � 4.61 37 � 40 (N) 22 � 42 (E) 2.90 � 7.58 50 � 55 (N) 17 � 36 (E)

Marine organisms 28 0.92 � 0.78 22 � 34 (N) 16 � 47 (W) 1.30 � 0.63 14 � 19 (N) 8 � 24 (W)
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What is more, hotspots of biological invasions and their most sus-

ceptible native species do not match at large scales (Figure 1c).

This mismatch agrees with Bellard, Genovesi, and Jeschke (2016),

showing how the worldwide distribution of species threatened by

biological invasions, and concentrated in the Americas, India,

Indonesia, Australia, and New Zealand, overlap only partially with

hotspots of invasion in Europe, Asia, and South America. Our

results can be explained by the low human accessibility of pro-

tected areas generally, and especially those protected in the early

20th century, often located in remote and pristine regions with

very low human density and limited economic value, usually high

mountains (Gaston et al., 2008). In addition, active management of

human impacts may also explain the low number of invasive spe-

cies found in nationally designated areas that are usually con-

trolled to ensure protection of the conservation values.

In contrast, the richness of invasive species increases rapidly in

PAs designated after the 1970s (Figure 1), which may reflect the

intense proliferation of invaders in Europe registered after a five-

fold increase in global trade over the last decades (Butchart et al.,

2010; Seebens et al., 2015). Concurrently, the number and size of

European PAs has experienced an exponential growth since the

1990s (Gruber et al., 2012), explaining the increase in both sus-

ceptible and invasive species found in PAs by a simple species/

area relationship (i.e., the larger total area protected, the more

probabilities to find both native and invasive species). The larger

number of invasive species registered in Natura2000 in compar-

ison to nationally designated areas can be related to their recent

designation, large area, high human accessibility, and permissive

management (Figure 2). Actually, while Natura 2000 includes

strictly protected nature reserves, low-intensity human activities

are allowed on most of the land, which can reasonably explain

their higher levels of invasion.

Altogether, these observations suggest that the early establish-

ment and restriction of human activities within PAs provide an effec-

tive barrier against biological invasions (Py�sek et al., 2003). The

difficulty for invasive species to colonize protected areas can be

attributed to a combination of factors including natural biotic resis-

tance of taxonomically rich resident communities promoted by the

relatively pristine conditions of protected areas (Foxcroft et al.,

2011), restriction of human activities and intensive conservation

management (Py�sek et al., 2003), low human accessibility and thus

low propagule pressure, and the time lag between a species’ initial

colonization of disturbed areas and its wider expansion toward more

natural—and typically more diverse—landscapes (Gonz�alez-Moreno,

Diez, Richardson, & Vil�a, 2015). In this sense, Hiley, Bradbury, and

Thomas (2014) cautioned that while PAs do not facilitate the colo-

nization of invasive species at their initial stage, they are more sus-

ceptible to invasion as populations establish and spread.

Understanding the relative contribution of these factors to explain

PAs susceptibility to biological invasions is beyond the objectives of

this study, but fundamental to optimize PA’s design and manage-

ment for the conservation of native species and habitats undergoing

global changes.

4.2 | Invasive species under climate change

Predictions extracted from distribution models match the empirical

evidence that the level of invasion in the Atlantic biogeographic

region (6,600 non-native species according to Zieritz, Gallardo, &

Aldridge, 2014) is among the highest in the world. This pattern has

been attributed to several colluding factors: the presence of several

large ports such as Antwerp and Hamburg, which rank among the

top 20 ports with the highest invasion risk (Seebens, Gastner, & Bla-

sius, 2013), mild temperate conditions (B�ellard et al., 2013), high

habitat disturbance, dense human population and transportation net-

works, and high degree of economic activity (Gallardo et al., 2015).

Such concurrence of risk factors may also explain the concentration

of invasive species in protected areas around the British Channel

observed in Figure 1a. Furthermore, our results match observations

of climate-related increases in fish richness in the North Sea over

the last two decades (Hiddink & Ter Hofstede, 2008), and of the

northward expansion of invaders from the southern (Levant Sea)

toward the northern (Adriatic and Liguarian Seas) coasts registered

in the Mediterranean Sea (Bianchi & Morri, 2000).

As temperature increases across inland habitats, our models pre-

dict invasive species to shift northwards at an average pace of 37

(middle-term) to 55 (long-term) km/decade (Table 3), which is two to

nine times faster than previously predicted for native terrestrial spe-

cies (17.6 � 2.9 km/decade, Chen, Hill, Ohlem€uller, Roy, & Thomas,

2011, 6.1; � 2.4 km/decade, Parmesan & Yohe, 2003). Multidirec-

tional shifts in the marine environment—with important differences

among species currently located in the Mediterranean, the northern

Seas, or both—lead to lower average centroid shift rates of 14 (mid-

dle-term) to 22 (long-term) km/decade (Table 3). Indeed, rapid range

changes have been documented for invasive species in terrestrial

and marine environments (see examples in Hellmann et al., 2008;

Walther et al., 2009), often associated to their competitive ecological

traits (Estrada, Morales-Castilla, Caplat, & Early, 2016). However,

more research is still needed to allow direct comparison of realized

range shifts between native species and their invasive counterparts.

Not all invasive species are predicted to expand their distribution

as a response to climate change, but 33%–48% of the invasive spe-

cies are predicted to lose areas climatically suitable across Europe.

Reduced climate suitability may indeed impair the performance of

some invaders, eventually increasing their vulnerability to other fac-

tors, including management (B�ellard et al., 2013; Bezeng et al.,

2017). It is nevertheless reasonable to expect invasive species to

adapt and persist under increasing temperatures, particularly in the

case of rapidly reproducing taxa (Thomas et al., 2004). Furthermore,

global warming is facilitating the migration of new invasive species

from lower latitudes that will increase the pressure of biological

invasions in southern Europe. As way of example, the Mediterranean

Sea is currently experiencing the massive migration of Lessepsian

invaders from the Red Sea via the Suez Canal (Por, 2012), and mos-

quito-borne tropical diseases like malaria, dengue, or the West Nile

Virus are undergoing rapid expansion toward northern latitudes in

continental Europe (Lafferty, 2009).
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Large and rapid distributional shifts reported in this study derive

from a wide diversity of species-specific responses, as evidenced by

the large overdispersion of range change and centroid shift metrics

reported in Table 3 (extended in Tables S9–S12). The realized shift of

each species will ultimately depend on biological characteristics of its

populations, including the interaction with other species, as well as on

how they cope with the drivers of change. In this sense, most of the

species investigated here are highly fertile and/or fecund; have a

broad diet, mobile adult, or juvenile forms; and are habitat generalists

able to persist under unfavorable conditions (DAISIE, 2009). All of

these characteristics have been linked to the extraordinary ability of

invasive species to circumvent geographic barriers profiting from the

intense transportation of people and commodities across the world

(Capinha, Essl, Seebens, Moser, & Pereira, 2015; Seebens et al., 2015),

and consequently with the potential to occupy all of their climatically

suitable habitats (Estrada et al., 2016). Nevertheless, some taxonomic

groups that are difficult to detect such as parasites, fungi and algae,

may have been underrepresented here, a pervasive taxonomic bias in

the invasive species literature. Finally, species are distressed to differ-

ent extents by nonclimatic factors (e.g., landscape structure, human-

induced disturbances, and habitat characteristics) and by multispecies

interactions, which themselves depend on a variety of environmental

drivers. However, these factors are more likely to affect local and

regional distributions of species rather than the continental patterns

described here (Pearson & Dawson, 2003).

4.3 | Invasive species under climate change in
protected areas

Biological invasions constitute one of the most important threats

associated with species extinction (Bellard et al., 2016), both via

direct impacts on resident species and through synergies with other

extinction drivers (Walther et al., 2009). Here, we show that range

expansion is likely to prevail over contraction for many environments,

taxonomic groups, life-history strategies, and future scenarios. Our

results suggest that climate change could not only drive protected

species out of the boundaries of static protected areas (Ara�ujo, Ala-

gador, Cabeza, Nogu�es-Bravo, & Thuiller, 2011) but also facilitate the

colonization by invasive species (Py�sek et al., 2013), thereby increas-

ing the pressure posed upon native populations. As temperature

increases, species are largely predicted to shift northwards at a much

faster pace than previously envisioned for native species (Chen et al.,

2011; Parmesan & Yohe, 2003), which may seriously compromise the

conservation of biodiversity and ecosystem services. Considering the

successful history of invasion of the species investigated, their biolog-

ical traits and human-related dispersal, our projections indicate a wor-

rying increase in invasion intensity in Europe. Fortunately, this trend

is somewhat tempered by our analyses that reveal that the observed

and expected intensity of invasion are less pronounced within the

network of inland and marine protected areas. While the static nature

of PAs has been largely questioned (Hannah et al., 2007), studies

have demonstrated their essential role to protect species shifting their

ranges as a response to climate change (Ara�ujo, Cabeza, Thuiller,

Hannah, & Williams, 2004) and to facilitate the adaptation of resident

communities (Ga€uz�ere et al., 2016; Johnston et al., 2013; Thomas

et al., 2012). We conclude that protected areas have the potential to

provide strategic refugia to native species from the expansion of inva-

sive species spreading under climate change. Understanding the

mechanisms underlying such potential is crucial in facilitating the

identification of areas of future conservation concern as well as

opportunities for restoration.
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Protected areas are championed as refugia for native biodiversity and habitats, but we do not know how effective they are in shielding native

taxa from biological invasions under projected climate change. Here, we found that only a quarter of Europe’s marine and terrestrial areas pro-

tected over the last 100 years have been colonized by 100 of the worst terrestrial, freshwater, and marine invaders, with long-established

areas showing the lowest richness of invaders (A). This situation may change in the future, as models anticipate a shift in species distribution

toward the north and east of Europe in response to climate change (B).




